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1 Proximal Gradient Descent for Nonsmooth and Convex Func-
tion

1.1 Motivation

Convergence speed is O( 1√
T

) of subgradient descent for convex, non-smooth, and Lip objective function.

Comparing with the speed O( 1
T ) of GD for smooth and convex objective functions, it is relatively slow.

Q: Can we improve the convergence speed?

Let us consider a specific type of non-smooth optimization problems.

min
x
h(x) := f(x) + g(x) (1)

where f(x) is convex and β-smooth, and g is convex and possibly non-smooth.

Next we will show some examples for demonstrating the importance of the optimization formulation (1).

Example 1 (Ridge Regression) Let us consider the linear regression example again.

• Data: {ai, bi}mi=1, where ai ∈ Rn, bi ∈ R.

• Suppose that
bi = a>i x + εi,

where x = (x1, . . . , xn)> is denoted as regression coefficient.

• Matrix Form: denote that b = (b1, . . . , bm)> ∈ Rm, A = (aij) = (a1,a2, . . . ,am)> ∈ Rm×n, and

b = Ax + ε,

where ε = (ε1, . . . , εm)>.

• Optimization Formulation:

min
x

1

2
‖Ax− b‖22. (2)

• Solution: x∗ = (A>A)−1A>b. However, if rank(A) < n, then it is not invertable. This is called
col-linearity.

• Numerical Solution:
x∗(λ) = (A>A+ λIn)−1A>b, (3)

and let λ→ 0.

• This is the solution of the optimization prolbem:

min
x

{
1

2
‖Ax− b‖22 + λ‖x‖22

}
. (4)

1



Example 2 (Statistical Perspective for Ridge Regression) From the statistical modeling framework: we
suppose that:

• Data: {ai, bi}mi=1, where ai ∈ Rn, bi ∈ R.

• Suppose that
bi = a>i x + εi,

where x = (x1, . . . , xn)> is denoted as regression coefficient and εi ∼ N (0, 1).

• Prior distribution: x ∼ N (0, 1
λIn).

• Posterior distribution:

P(x|A,b) =
P(A,b|x)P(x)

P(A,b)
,

where

P(x) =
1

(2π)n/2
exp

{
−λ‖x‖

2

2

}
,

and

P(A,b|x) =

n∏
i=1

P(ai,bi|x) =

n∏
i=1

1

2π
exp

{
− (bi − a>i x)2

2

}
.

• Maximal Posterior (MAP) Estimation:

max
x

P(x|A,b) ∝ P(A,b|x)P(x).

So, it is equivalent to

min
x
− logP(A,b|x)P(x) = min

x

{
1

2
‖Ax− b‖22 + λ‖x‖22

}
.

• Numerical Solution:
x∗(λ) = (A>A+ λIn)−1A>b. (5)

Figure 1: LASSO vs. Ridge
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Example 3 (Least Absolute Shrinkage Selection Operator (LASSO) [Tibshirani, 1996]) Let us consider a
high-dimensional case study in a business setting. Assume that we have collected many customer’s data
for constructing the user portrait in a big company. This means that we will use x ∈ Rn to represent one
consumer and n is really big. Consider a common research question: which features (variables) will effect
the consumer’s purchase behavior for one product. How to do? If we use the linear regression model to
handle the problem, it is called the variable selection problem for linear regression. Which is the best model?
Actually, we have 2n − 1 candidate models that can be selected. How to handle such a huge problem? We
suppose that:

• Data: {ai, bi}mi=1, where ai ∈ Rn, bi ∈ R.

• Suppose that
bi = a>i x + εi,

where x = (x1, . . . , xn)> is denoted as regression coefficient and εi ∼ N (0, 1).

• From optimization perspective:

min
x

1

2
‖Ax− b‖2 (6)

s.t. ‖x‖1 ≤ t. (7)

See Figure 1 for the geometric interpretation.

• Prior distribution: x ∼ L(0, 1
λIn), where

P(x) =
1

g(λ)
exp

{
−λ‖x‖1

2

}
.

• Posterior distribution:

P(x|A,b) =
P(A,b|x)P(x)

P(A,b)
.

• Maximal Posterior (MAP) Estimation:

max
x

P(x|A,b) ∝ P(A,b|x)P(x).

So, it is equivalent to

min
x
− logP(A,b|x)P(x) = min

x

{
1

2
‖Ax− b‖22 + λ‖x‖1

}
.

1.2 Proximal Gradient Algorithm

We consider the
min
x
h(x) := f(x) + g(x) (8)

where f(x) is convex and β-smooth, and g is convex and possibly non-smooth.

Let us go back to review the GD algorithm in advance. Because of the convexity of f , it has that

f(x) ≤ mt(x) = f(xt) + 〈∇f(xt),x− xt〉+
β

2
‖x− xt‖2

= f(xt)− 1

2β
‖∇f(xt)‖2 +

β

2
‖x− (xt − 1

β
∇f(xt))‖2.
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So, x∗ = xt − 1
β∇f(xt) is the GD.

Let us go back to consider h(x), it has

h(x) ≤ mt(x) + g(x) = f(xt) + 〈∇f(xt),x− xt〉+
β

2
‖x− xt‖2 + g(x)

= f(xt)− 1

2β
‖∇f(xt)‖2 +

β

2

{
‖x− (xt − 1

β
∇f(xt))‖2 + g(x)

}
.

If we set zt = xt − 1
β∇f(xt), then target optimization problem is:

min
x

β

2
‖x− zt‖2 + g(x). (9)

Definition 1 Assume that g is convex, the proximal operator of g is

proxγg(z) = arg min
x∈dom(g)

{
g(x) +

1

2γ
‖x− z‖2

}
. (10)

Based on the definition, actually

prox1/βg(z
t) = arg min

x∈dom(g)

{
g(x) +

β

2
‖x− zt‖2

}
= arg min{mt(x) + g(x)}. (11)

Proximal Gradient Descent Algorithm:

zt = xt − 1

β
∇f(xt), (12)

xt+1 = prox1/βg(z
t). (13)

Definition 2 Suppose that Ω ⊆ Rn, the indicator function of Ω is

δΩ(x) =

{
+∞, x /∈ Ω

0, x ∈ Ω.
(14)

Definition 3 The projection of a point z onto a set Ω is defined as

πΩ(z) = arg min
x∈Ω
‖x− z‖2. (15)

Example 4 Projection examples:

• Ω = {x|x ≥ 0}, then πΩ(z) = max{z, 0}.

• Ω = {x|l ≤ x ≤ u}, then πΩ(z) = max(min{z, u}, l).

• Ω = B2 = {x| ‖x‖2 ≤ 1}, then

πΩ(z) =

{
z, ‖z‖2 ≤ 1,

z
‖z‖2 ‖z‖2 > 1.

• Ω = {b|b =
∑m
i=1 xiai,ai ∈ Rn, xi ∈ R} = {b|b = Ax} = Col(A). Q: What is the πΩ(z)??
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Example 5 (Projected Gradient Descent)

Let us consider a general optimization problem

min
x

f(x),

s.t. x ∈ Ω.

This is equivalent to
min
x
{f(x) + δΩ(x)}. (16)

Obviously, δΩ is convex and non-smooth. So, it has the form of Eq.(1). Let us compute the proximal operator
of δΩ as follows.

prox1/βδΩ(zt) = arg min
x∈dom(δΩ)

{
δΩ(x) +

β

2
‖x− zt‖2

}
= arg min

x∈Ω
‖x− zt‖2 := πΩ(zt). (17)

Obviously, πΩ(zt) is the projection of zt onto Ω.

• Ω = {x|x ≥ 0}, then xt+1 = prox1/βδΩ(zt) = πΩ(zt) = max{xt − 1
β∇f(xt), 0}.

• Ω = {x|l ≤ x ≤ u}, then xt+1 = prox1/βδΩ(zt) = πΩ(zt) = max(min{xt − 1
β∇f(xt), u}, l).

• The same with B2 or Col(A).

These algorithms are called projected gradient descent.
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